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In numerical simulations of unstable flows the absolute or convective nature of the
instability can be modified by numerical effects. We introduce a convective/absolute
analysis of the dispersion relations associated with discretized operators. This analy-
sis leads to conditions on the discretization parameters in order to avoid numerical
transition from absolute to convective instability and vice versa. In numerical simu-
lations of non-parallel flows, local numerical transitions, of the kind described in this
paper, could lead to the wrong global dynamics,.1998 Academic Press

1. INTRODUCTION

In the last ten years the notions of local/global and absolute/convective instabilities
been recognized as essential for understanding the spatio-temporal dynamics of open
The concept of absolute and convective instability was originally introduced in plas
physics [1, 2] and has been successfully applied to open flow dynamics [7, 8]. It apg
to parallel flows, i.e., flows invariant under translation in the streamwise dirextidhe
criterion used to discriminate between absolute and convective instability is based or
linear impulse response, i.e., the Green func®im, t), in the “laboratory” frame, which
is the reference frame singled out by boundary conditions. The instabitibsislutevhen
G(x,t) becomes infinite with time at any fixed locatienin the laboratory frame and
convectivewhen it goes to zero in the laboratory frame (and to infinity in at least o
different Galilean frame). In the laboratory frame, a convectively unstable flow will rel
everywhere to the basic state as the transient is advected downstream. The flow will be
as a spatial amplifier when spatially localized harmonic forcing is applied. By contr:
in an absolutely unstable flow, a transient will initially grow in place and then sature
leading to self-sustained oscillations. For spatially evolving flows the global behaviol
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the flow can be deduced by a local analysis, i.e., an analysis in which in each poin
local parameters are frozen and a parallel flow analysis is developed, if the instak
wavelength is small compared to the characteristic inhomogeneity length. Flows tha
locally convectively unstable everywhere behave as noise amplifiers while a finite re
of local absolute instability is necessary to obtain a global instability leading the flow to
intrinsic oscillatory behavior [4].

The numerical simulation of unsteady flows has become a routine task in many fi
of science and technology such as meteorology, plasma physics, or applied aerodyne
In a numerical simulation, changing the absolute or convective nature of the instab
responsible for the time-dependent behavior, can result in the wrong global dynamic
the flow, for instance a transition from a noise amplifier behavior to an oscillator beha
or vice versa. The problem we analyze in this paper is that the absolute and conve
nature of the instability can be modified by numerical effects. This is obvious when
considers that the dispersion relation associated with the physical system is altere
the numerical scheme. It is thus important to ensure that, at least locally, the nature ¢
instability is not changed by numerical effects. Here we analyze the simplest case in w
this phenomenon can be observed, i.e., a finite difference numerical simulation of a pa
one-dimensional unstable flow. This analysis can be extended to non-parallel flows by
the parallel analysis locally just as is done for the von Neumann numerical stability anal
of non-parallel flows. We hope that the techniques we shall explain below will prove us:
in much the same way.

The idea of analyzing the dispersion relation of a numerical scheme in order to bette
derstand its properties, such as the numerical group velocity, is not new and a review is ¢
by Trefethen [14]. However, all previous analyses were limited to neutral or stable flow:
real wavenumbers and frequencies, and did not consider the convective or absolute nat
the instabilities. In this paper we consider both stable and unstable dissipative systems,
plex frequencies and wavenumbers, and we analyze the dispersion relation associate
the discretized operator to detect the convective or absolute nature of numerical solut

The numerical effects we analyse here are not to be confused with the ones ind
by numerical boundary conditions. Buell and Huerre [3] showed that global self-sustai
oscillations can be observed in numerical simulations of flows that are convectively unst
everywhere and should behave just as noise amplifiers. This spurious global behavior i
to the outflow numerical boundary conditions that create destabilizing pressure feed
loops [3]. By contrast the numerical effects we analyse here appear also in infinite dorn
and for a model problem that does not allow pressure feedback: they are intrinsic tc
numerical discretization.

This paper is organized as follows. In Section 2 we introduce the Ginzburg—Lan
equation, used as a model in this paper, and three sample numerical schemes. The disy
relations associated with the model equation and its discretizations are briefly review
Section 3. In Section 4 we apply the temporal stability and convective/absolute analys
the considered dispersion relations and discuss them in Section 5. Finally, some conclu
are drawn in Section 6.

2. THE MODEL EQUATION AND ITS DISCRETIZATION

We illustrate our points on the linearized Ginzburg—Landau operator. This is the <
plest model that can show convective and absolute instabilities [7]. The Ginzburg—Lar
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equation describes the wave amplitude in a bifurcating spatially extended system an
been considered to model the transition of closed [10] as well as open [13] fluid dynan
systems

KA =uA—UdA+ yduA, 1)

with U the mean (positive) advection velocity, the bifurcation parameter, and the
(positive) diffusion coefficient. We consider three sample discretizations of Eq. (1).
spatial derivatives are discretized by centered, symmetric second-order formulas i
the schemes. If we define the functidiix, t) = A — U dx A + y dxx A we have
Al — A" Al —2A"+ A"
fP— LA —U j+1 -1 j+1 J i-1
PR 2AX Ty AX?

: )

where AT = A(xj, ty) and f'= f(x;j, tn). The grid is equally spaced so thet= j Ax
andt, = nAt. The first scheme (EE) is based on Euler-explicit discretization in time, t
second (CN) on a Crank—Nicholson (semi-implicit) discretization, and the third (EI) on
Euler-implicit one.

AT+1 B AT fﬂ E
Tat B
Ar)+l_ Al f.n+l 4 fn
J J J ]
= CN ©)
At 2 €N)
n+1
L_AT — fn+l (EI).
At !

The EE and El schemes are first-order accurate in time, while the CN one in second-(
accurate.
3. PHYSICAL AND NUMERICAL DISPERSION RELATIONS

If we consider solutiong\(x, t) of Eq. (1) in the form of normal mode&e <*-«t where
k andw are the complex spatial wavenumber and temporal frequency respectively, we ol
the physical dispersion relatian

o=Uk+i(u—ykd. 4)

In a similar fashion, by considering solutio#§ of Eq. (3) in the form of normal modes
Ad (-t \we obtain the correspondimyimerical dispersion relations

el Ewax Uy (ED
At
AR Rk axw Uy CN) (5)
1—egort

=Fk;A7 1U7 EI
AL (k; AX, u, U, y) (El)
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with
iu . 2y
F =u — — sinkAXx + ——(coskAx — 1). 6
N + AxZ( ) (6)

One canimmediately verify that fatxx — 0 andAt — 0, we recover the physical dispersion
relation, Eq. (4), for the three numerical dispersion relations.

It is convenient to introduce the dimensionless variableswy /U?, k= ky/U, and
parametersy = uy /U2, R=AxU/y, and S= AtU?/y. In the literature on numerical
stability analysis the two parameters= U At/Ax and 8 =y At/Ax? are usually used.
They are related as follows to the parameters that we use in this sted$®/R, 8 = S/R?.
The physical dispersion relation, Eq. (4), may then be cast in dimensionless form,

d=k+i(n-k) @

as well as the numerical dispersion relations, Eq. (5)

e—iz?)S 1 o .
s = FkR 1) (EB
—2itanvS - - .
< P2 _E&R L (CN) 8)
_ oS A
T _EkR @D
S
with
F=i i—sinRR+ E(COSRR 1) 9)
“FTR R? '

4. CONVECTIVE/ABSOLUTE INSTABILITY ANALYSIS

As pointed out in the Introduction, the stable and convectively or absolutely unste
nature of a parallel flow is defined by the behavior of its impulse resp@iiget) but can
also be deduced from the analysis of its dispersion relation [1, 2, 7]. A stable flow adt
only damped temporal modes, i.2m[& (k)] < O for every real wavenumbé;, otherwise
it is unstable. For the physical dispersion relation, Eq. (7), we have a bifurcation frol
stable to an unstable behavior foe="0 with a most amplified wavenumbkax= 0.

For unstable flows the behavior of the Green’s functionfedesl(in the laboratory frame)
spatial locationx is dominated by thebsolute wavenumbeg kcorresponding to a zero
group velocityd®/dk(ko) = 0. An observer ax will see the impulse response dominate:
by the absolute frequencyboza‘)(ﬁo). If Zm[wo] <O we are in a convectively unstable
regime, whereas the instability is absolut&ifi[®o] > 0. The absolute wavenumber anc
frequency correspond to a singularity of the dispersion relation that must fulfill a pinch
requirement [1]. The determination of the convective or absolute nature of an instak
based on the analysis of the singular points of the dispersion relation is known as
Briggs—Bers criterion [1, 2].

For the physical dispersion relation, the complex group velocitygigdk =1 — 2ik,
the absolute wavenumberkig= —i /2, and the absolute frequencyis =i (i — 1/4); the
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flow will thus be physically convectively unstable foxQi < 1/4 and physically absolutely
unstable fo™> 1/4.

We performed an absolute/convective stability analysis of the numerical scheme
using the Briggs—Bers criterion applied to the numerical dispersion relations, Eqg. (8).
this analysis, limitations on frequency and wavenumber bandwidths must be introdt
due to the numerical discretizatior:n/R <k <7/R and —7/S< & < /S. While the
temporal stability analysis of numerical dispersion relations is fully equivalent to the wid
used von Neumann stability analysis, the convective/absolute instability analysis apj
to the dispersion relations of numerical schemes is the main novelty that we introduc
this paper. The detailed results of the analysis are reported in Appendix A, and we dis
them, in the following sections, separately for the three numerical schemes we consid
As the spatial discretization is the same for the three schemes, the stability res8ks@or
are the same for the three schemes.

4.1. Euler Explicit Scheme

The stability diagrams of the EE scheme are reported in Fig. 1. The physically stable
is considered in Fig. 1a. As it is well known, this scheme produces a numerical instab
over much of théR, S) plane. We found that this numerical instability is absolute in a larg
region, and convective in a narrow band. The physically neutral gase0), in which
the Ginzburg—Landau equation reduces to the convection-diffusion one, is considere
Fig. 1b. The curve which separates the stable from the unstable regions is the clas
result of the von Neumann stability analysis (see, for example, [6]). In this case it is fo!
that the absolute instability boundary, found by a local analysis, exactly coincides v
the global instability boundary, obtained with the spectral radius criterion, when Dirict
boundary conditions are enforced [6, 12]. The absolute nature of the instability allow:

FIG. 1. Stability diagrams for the Euler explicit scheme in (a) a physically stable situgtien;-0.125;
(b) a physically neutral situation = 0; (c) a physically convectively unstable situatipgn="0.125; and (d) a
physically absolutely unstable situation="0.26. The unstable regions are depicted in gray, light gray for
convective instability, and dark gray for an absolute one.
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amplified energy radiation from the downstream boundary into the computational don
and thus a global instability. In our view, the concepts of absolute and convective in
bility applied to numerical schemes should probably permit the extension of the anal
of Trefethen [15], who treated the instability of difference models for hyperbolic initi
boundary value problems, to non-hyperbolic and/or unstable systems. This extensi
currently under consideration. A physically convectively unstable situation is considere
Fig. 1c. Here, the EE scheme could produce numerically absolutely unstable solution:
large region of theR, S plane. A physically absolutely unstable situation is considered
Fig. 1d where, ifu"< 1/2 (less than twice the physical absolute transition critical value)
convective instability could be diagnosed even for srB8all a large range oR values.

To ensure numerical stability, even in physically unstable situations, the stability col
tions of the physically neutral case are usually enforced. For the EE scheme this corresj
to the limitationS < R?/2 for R < 2. In the convectively unstable regime, the limitations o
Sto avoid transition to a numerical absolute instability are less stringent than the stak
condition whenR < 2. In the absolute instability regime, however, only a limitationRn
is necessary to avoid a transition to a numerical convective instability.

4.2. Crank—Nicholson Scheme

As it is well known, this scheme is always numerically stable when the solution is p
sically stable so we discuss only the physically unstable regime. A physically convecti
unstable situation is considered in Fig. 2a where the scheme could produce nume
solutions that are absolutely unstable for ev8rif a too coarse spatial discretization is
chosen (largdR). A physically absolutely unstable situation is considered in Fig. 2b whe
a convectively unstable numerical solution could be observed for every time stepinag
range ofR. We observe that only the first band (the left one) of absolute instability is t
“good” one as the second one (the one on the right) is an absolute instability with a wi
absolute wavenumber. An interesting feature of the CN scheme is that the stability
absolute instability boundaries do not dependsdiut only onR: convergence tests basec
only on time step refinements could leave the convergence path always in the wrong re

4.3. Euler Implicit Scheme

We report in Fig. 3 the stability diagrams of the El scheme inRh& plane. As for the
CN scheme we discuss only the physically unstable regime as the scheme is numer
stable in the physically stable regime. A physically convectively unstable case is consid

FIG.2. Stability diagrams for the Crank—Nicholson scheme in (a) a physically convectively unstable situat
1 =0.125; and (b) a physically absolutely unstable situatios; 0.26. The unstable regions are depicted in gray
light gray for a convective instability, and dark gray for an absolute one.
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FIG. 3. Stability diagrams for the Euler implicit scheme in (a) a physically convectively unstable situati
=0.125, and (b) a physically absolutely unstable situatios; 0.26. The unstable regions are depicted in gray
light gray for a convective instability, and dark gray for an absolute one.

in Fig. 3a, where a region of numerical absolute instability is detectable for large value
R. In that region, for instance, convergence tests based only on time step reductions v
always be contained in the wrong region. A physically absolutely unstable situatior
considered in Fig. 3b. The region of numerical stabilization increases wlemcéreased
and the numerically convectively unstable region is reduced. In contrast to the behe
observed for the explicit scheme, the numerical stabilization need not be preceded
change from absolute to convective instability.

5. DISCUSSION

To verify the results obtained in Section 4, numerical tests have been performed.
three schemes considered were implemented using the homogeneous Dirichlet bou
condition atx = —L /4 andx = 3L /4. In order to detect the absolute or convective natul
of the numerical solution we analyzed the evolution of the “discretized Green functic
i.e., the evolution of an initial condition having a value of 1 fo£ 0 and zero everywhere
else. According to the definition, given in Section 1, the instability is convective if, f
sufficiently largen, |G (0, t,)| decreases and is absolute if it increases. The numerical res
were obtained with =1, y =1, L = 640 and, to avoid finite domain effects, the runs wer
stopped before the wavepacket could reach the boundaries of the computational domai
numerical results, obtained for some sample point i BeS) parameter space, confirmed
the predictions we developed in Section 4. We found remarkable how easily results affe
from numerical transitions could be confused with physically correct results.

For open spatially evolving flows it is believed that the global dynamics can be qu
tatively explained from the nature of the local stability characteristics, i.e., the absolut
convective nature of the instability of the parallel flows associated with the velocity profi
of each streamwise section [7]. For a global instability leading to self-sustained oscillat
a finite region of absolute instability is necessary [4, 5], whereas flows that are everyw
locally convectively unstable behave as noise amplifiers [7].

Just as in the physical situation, numerical transitions from local convective instabi
to local absolute instability, in some regions of the computational domain, could aff
the qualitative global behavior of the numerical solution for simulations of even comp
spatially evolving flows. On one hand, in a flow that is physically locally convective
unstable everywhere and thus behaves as a noise amplifier, the existence of a finite r
of local numerical absolute instability could lead to spurious self sustained oscillations
the other hand, a numerical transition from local absolute to local convective instab
could lead to the numerical suppression of global instabilities.
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For flows that experience “physically” a global instability, local transitions can lead to
underestimation or an overestimation of the critical value of the bifurcation parameter.
instance, the onset of the vorakian vortex street in the circular cylinder wake is produce
by a global Hopf bifurcation and is due to the presence of a finite region of local abso
instability in the near wake [9]. In this case, the size of the local absolute instability reg
can be modified by the numerical effects we described. If the numerical scheme pron
transitions fromlocal convective to local absolute instability the region of numerical abso
instability is larger than the physical one and the critical Reynolds number for the glc
instability is underestimated. If, on the contrary, transitions from local absolute instabi
to local convective instability are promoted by numerical effects, the numerical abso
instability region is smaller than the physical one and thus the critical Reynolds nun
will be overestimated. Such numerical effects could explain the large scatter (betwee
and 54) of critical Reynolds numbers obtained, from numerical simulations, for the circ
cylinder wake.

It is already well known that boundary conditions enforced on the boundaries of
computational domain may also affect the global dynamics of the simulated flow. Bt
and Huerre [3] showed that destabilizing pressure feedback loops can be generated |
influence of outflow numerical boundary conditions on the upstream boundary, leac
flows that are convectively unstable everywhere to spurious global self-sustained os
tions. It is important to stress that the numerical effects we analyse here, in contra
numerical effects of the type described in [3], appear also in infinite domains and ft
model problem that does not allow pressure feedback: they are intrinsic to the nume
discretization just as the numerical instabilities analyzed with von Neumann stability a
yses. The point to be retained is that even if one enforces correctly the outflow boun
conditions and the von Neumann stability conditions are satisfied a wrong behavior o
flow may be still induced by numerical transitions from convective to absolute instabi
and vice versa.

It should also be remarked that the region of the computational plane near the orig
not the only interesting one. Large values of the spatial atepand thus of the parameter
R, may be attained for instance in meteorological applications such as global circula
simulations or, in general, in large eddy simulations of turbulent flows. Over a large rang
Ritmay be seen from the results presented in the previous section that awrong behavio
be maintained even &— 0. In our sample discretizations we considered only center
schemes for spatial discretizations and perhaps tBésdependent numerical transitions
for large valuesR may be avoided by using others spatial discretization schemes.

6. CONCLUSIONS

In this article we showed that in numerical simulations of unstable flows the convec
or absolute nature of a physical instability can be modified by numerical effects. Stan
convergence tests in thex, At plane are not sufficient to avoid erroneous behavior of tt
solution because the convergence path could be contained in the wrong region.

The Briggs—Bers criterion, widely applied to physical dispersion relations to deternr
the absolute or convective nature of an instability for a continuous operator, is here appli
dispersion relations associated with discretized operators. This type of investigation re'
the impact of the numerical effects on the absolute/convective nature of the instabilitie
the numerical solution and allows for the design of appropriate convergence paths i
AX, At plane. Itis found that some limitations in the time stepand/or in the mesh spacing
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AX are necessary to avoid numerical transitions from convective to absolute instabil
and conversely. For the model equation considered, namely the Ginzburg—Landau equ
three sample discretizations were considered: an Euler-explicit, a Crank—Nicholson, ar
Euler-implicit one. For none of these discretizations the numerical stability requireme
given by avon Neumann stability analysis, automatically avoid a wrong convective/absc
behavior of the numerical solution. Numerical simulations validated the predictions deri
from the analysis of numerical dispersion relations.

Our analysis has been developed for parallel flows of infinite extent where the the
exactly applies just as the classical von Neumann stability analysis. However, even
strictly applies to parallel flows, a local von Neumann analysis, and the numerical stab
conditions deriving from it, are commonly used to avoid numerical instability in simulatio
of spatially evolving flows (see for instance [11]). In the same spirit, we suggest using
analysis and criteria as local ones, to ensure that the local nature of the instability,
eventually the global dynamics of the flow, are not altered by the numerical scheme.

APPENDIX A: NUMERICAL STABILITY AND CONVECTIVE/ABSOLUTE
INSTABILITY BOUNDARIES

A.1. Conditions for Temporal Instability

For it <0 (physically stable situation):

0<R<2 R>2
2R? 2— iR++/ 2R~ 42 R2— 41 R2+ 16/
EE S> = S> T e
CN Never unstable Never unstable
El Never unstable Never unstable
For it > 0 (physically unstable situation):
2 2
O0<Rx< T R> 7
EE VS VS
CN VS VS
A~ 2R2
A.2. Conditions for Absolute Instability (Al)
For it < 0 (physically stable situation):
0<Rx2 R>2
2R? 4-2/1°R?
EE S> AR S> gl
CN Stable Stable

El Stable Stable
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For O< 1 < 0.25 (physically convectively unstable situation):

0<R<2 2<R< \/E R>,/2
- - - —\yn —\V i
EE S~ 2R S> 4 2/4R2 S~ 4-24R?
2 iR21/4—R2 —40+1 APR2—44+1
CN Never Al Never Al VS
MRZ 2 AR2-2 ;LR -2

For 025< i < 0.5 (physically absolutely unstable situation):

0<R<, /%5t 4-1_-R<2 2§R5\/Z R>,/2
3 a I3 i

R 4-24R? 4-24R?
EE vS S> o= 2 AR A—RC S> 4 S> i
CN VS Never Al Never Al VS
ARZ—2 1R? ARZ—2
El vS S< 27,148—4;24-1 S< 27ZRZ pr] S< 2;4 2R 4771

For iz > 0.5 (physically absolutely unstable situation):

VR
EE VS
CN VS

~2 32
neRe—2
Bl S<2-iF-2

ACKNOWLEDGMENTS

We thank L. Tuckerman and J. Haritonidis for their many helpful comments and critical review of the manus
and the gentle people of LadHyX (in particular P. Brancher, J.-M. Chomaz, and I. Delbende) for stimuls

discussions concerning this work.

REFERENCES

1. A.Bers, Linear waves and instabilities Rhysique des Plasmgadited by C. De Witt and J. Peyraud (Gordon

& Breach, New York, 1975), pp. 117-225.
2. R. J. BriggsElectron-Stream Interaction with Plasn@®IT Press, Cambridge, MA, 1964).

3. J. C. Buell and P. Huerrénflow/Outflow Boundary Conditions and Global Dynamics of Spatial Mixin

Layers Report CTR-S88, Center for Turbulence Research, Stanford, CA, 1988.

4. J. M. Chomaz, P. Huerre, and L. G. Redekopp, Bifurcations to local and global modes in spatially develc

flows, Phys. Rev. LetB0, 25 (1988).

5. R. J. Deissler, Noise-sustained structure, intermittency and the Ginzburg-Landau edqu&iatist. Phys.

40, 371 (1985).
6. C. HirschNumerical Computation of Internal and External Flo@¥iley, New York, 1988).

7. P. Huerre and P. A. Monkewitz, Local and global instabilities in spatially developing fhmvs,Rev. Fluid

Mech.22, 473 (1990).



108 COSSU AND LOISELEUX

8. L.D.LandauandE. M. Lifshitz, ®¢anique des fluides, Rhysique TheoriqugMIR, Moscow, 1989), Vol. VI,
French edition.

9. P. A. Monkewitz, The absolute and convective nature of instability in two-dimensional wakes at low Reyn
numbersPhys. Fluids31(5), 999 (1988).

10. A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude conveclioRluid Mech.38, 279
(1969).

11. R. D. Richtmyer and K. W. Mortom)ifference Methods for Initial Value Probler(i/iley, New York, 1967).

12. J.L. Siemieniuch and |. Gladwell, Analysis of explicit difference methods for a diffusion-convection equati
Int. J. Numer. Methods End2, 899 (1978).

13. K. Stewartson and J. T. Stuart, A nonlinear instability theory for a wave system in plane Poiseuille f
J. Fluid Mech.48, 529 (1972).

14. L. N. Trefethen, Group velocity in finite difference schen®#&M Rev24(2), 113 (1982).

15. L. N. Trefethen, Instability of difference models for hyperbolic initial boundary value probtéamsm. Pure
Appl. Math.37(2), 329 (1984).



